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SUMMARY

In this paper, a thermal lattice BGK model is developed for the Boussinesq incompressible �uids.
The basic idea is to solve the velocity �eld and the temperature �eld using two independent lattice
BGK equations, respectively, and then combine them into one coupled model for the whole system.
The porous plate problem and the two-dimensional natural convection �ow in a square cavity with
Pr=0:71 and various of Rayleigh numbers are simulated using the model. The numerical results are
found to be in good agreement with the analytical solutions or those of previous studies. Copyright
? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Lattice Boltzmann BGK (LBGK) method is a new numerical scheme for simulating viscous
compressible �ows in the subsonic regime. Instead of solving the usual continuum hydrody-
namic equations for the conserved �elds, the LBGK method tries to model the �uid �ow by
tracking the evolution of the distribution functions of the microscopic �uid particles. This ki-
netic nature of the LBGK method introduces some important features that distinguish it from
other numerical methods, such as the easy modeling of interactions among the �uids and full
parallelism. In recent years LBGK has achieved great success in simulations of �uid �ows
and modeling physics in �uids. A recent comprehensive review of this rapid developing area
is presented in Reference [1].
Originally, only mass and momentum conservations were considered in the LBGK method.

However, in many applications it is important and sometimes critical to consider the thermal
e�ects in �uid �ows. LBGK models for thermal �uid �ows have been developed by several
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groups. In general, these thermal LBGK models fall into two categories: the multispeed (MS)
approach and the multi-distribution function (MDF) approach. The MS approach is a straight-
forward extension of the isothermal LBGK models in which only the density distribution
function is used [2–4]. To obtain the macroscopic energy equation, the MS models introduce
some additional discrete velocities and the equilibrium distributions usually include higher
order velocity terms. Two limitations in the MS models severely restrict their applications,
i.e., the severe numerical instability and the narrow range of temperature variation.
Both limitations of the MDF approach can be partly overcome by the MDF approach. The

MDF approach utilizes the fact that, if the viscous heat dissipation and compression work
done by the pressure are negligible, the temperature �eld is passively advected by the �uid
�ow and obeys a simpler passive-scalar equation. In an MDF model, the temperature equation
is also solved using an LBGK equation by introducing an independent distribution function
[5]. MDF models can improve the numerical stability and the range of temperature variation.
The accuracy of the MDF models has been veri�ed by several benchmark studies [6–8].
Despite the advantages of the MDF models, there are still some limitations. For instance, in

order to get the correct macroscopic equations from the MDF models, it must be assumed that
the Mach number of the �ow is small and the density varies slowly. So theoretically the MDF
model can only be used to simulate compressible �ows in the incompressible limit. When used
for incompressible �ows, the method must be viewed as an arti�cial compressible method.
In some cases, such as turbulent �ows, this compressibility may produce some undesired
unphysical phenomena [9].
Some e�orts have been made to reduce or eliminate such errors [10–12] for isothermal

LBGK models. Recently, an MDF thermal LBGK model for the Boussinesq equations was
presented in Reference [8] based on an incompressible isothermal LBGK model. In a previous
work [13], an improved isothermal LBGK which can model the incompressible Navier–Stokes
equation was designed for both steady and unsteady �ows. In this paper, we extend this
incompressible model for thermal �uid �ows by introducing an additional LBGK equation
using a temperature distribution function to describe the evolution of the temperature �eld.
The temperature distribution is then coupled to the velocity distribution function based on the
Boussinesq assumption. We call this model for the whole system a ‘Coupled LBGK’, referred
to as CLBGK. The CLBGK is similar to the MDF since both use multiple ‘distribution
functions’. However, di�erent ‘distribution functions’ of the conventional MDF models are
based on the same lattice, while in the present CLBGK model the velocity and temperature
distribution functions can use di�erent lattices. Therefore, the CLBGK is more �exible than
the standard MDF models. The rest of the paper is organized as follows. In Section 2, the
CLBGK is constructed. In Section 3, numerical simulations are performed for the porous
plate problem with temperature gradient and the two-dimensional natural convection �ow in
a square cavity with two side walls maintained at di�erent temperature. The numerical results
are compared with the analytical solutions or those of previous studies using �nite di�erence
(FD) or multigrid methods. Some discussions are made in Section 4.

2. THE COUPLED LATTICE BGK MODEL

In this section, we will propose a coupled LBGK model in two-dimensional space. The
approach can also be used to develop other models either in two- or three-dimensional space.
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The standard LBGK method based on a square lattice and a recent improved model for
incompressible �uid �ows are �rst brie�y reviewed, and a simple LBGK equation is then
developed using four discrete velocities for the temperature �eld. Finally, the two LBGK
equations are combined up into the CLBGK model based on the Boussinesq assumption.

2.1. LBGK equation for velocity �eld

The LBGK method originates from the lattice gas automata (LGA) method, a simpli�ed
�ctitious molecular dynamic in which space, time, and particle velocities are all discrete. In the
LGA method, the �uid is described by a set of discrete particles residing on a regular lattice.
The state of a lattice node is described by a set of Boolean variables ni(x; t) (i=0; : : : ; b− 1)
representing the particle occupation, where b is the number of velocity directions of the particle
at each node. The particles collide at lattice nodes and move along the links. The �uid density
and velocity are determined from the statistic motions of the particles. The LBGK method
maintains most of the advantages and remedies many shortcomings of the LGA method. The
main feature of the LBGK method di�erent from the LGA method is to replace the Boolean
variables ni by the single-particle distribution function fi, and replace the complicated collision
operator of LGA by the simple Bhatnagar–Gross–Krook (BGK) collision operator. Specially,
the evolution of LBGK is described by the following equation,

fi(x+ cei�t; t +�t)=fi(x; t)− 1
�
(fi − f(eq)i ) (1)

where ei are the discrete velocity directions, c=�x=�t is the particle speed, �x and �t are
the lattice spacing and time increment, respectively. � characterizes the relaxation time of the
distribution function towards the local equilibrium f(eq)i . The �uid density � and velocity u
are determined from the zero and �rst moments of the distribution functions,

�=
b−1∑
i=0
fi; �u=

b−1∑
i=0
ceifi (2)

Note that unlike the LGA method, no statistic is needed to calculate the �uid density and
velocity in the LBGK method, and therefore statistic noise is completely eliminated. Another
distinctive feature of the LBGK method is that the local equilibrium distribution function f(eq)i
can be chosen appropriately to model the correct hydrodynamics in macroscopic limit. Here
we choose the two dimensional (D2Q9) model with nine discrete velocity directions based
on a square lattice as an example [14]. The discrete velocity directions of D2Q9 are de�ned
by e0 = (0; 0), ei=(cos(�(i − 1)=2); sin(�(i − 1)=2)) for i=1; 2; 3; 4, and ei=

√
2(cos(�(i −

9=2)=2); sin(�(i−9=2)=2)) for i=5; 6; 7; 8. The equilibrium distribution functions of D2Q9 are
given by

f(eq)i (x; t)=!i�+ �si(u(x; t)); for i=0; 1; : : : ; 8 (3)

where si(u) is a function of macroscopic velocity u and discrete velocity ei

si(u)=!i

[
3
(ei · u)
c

+ 4:5
(ei · u)2
c2

− 1:5 |u|
2

c2

]
(4)
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with the weight coe�cients !0 = 4=9, !1 =!2 =!3 =!4 = 1=9, and !5 =!6 =!7 =!8 = 1=36.
The �uid velocity u appearing in the above equilibrium distribution function is required to be
small enough, i.e. |u|=c ≈ M � 1, where M is the Mach number.
Through a multiscaling expansion, the mass and momentum equations can be derived from

the D2Q9 model as follows [14],

@�
@t
+∇ · (�u) = 0 (5)

@(�u)
@t

+∇ · (�uu) =−∇p+ �[∇2(�u) +∇(∇ · (�u))] (6)

where p= c2s � is the pressure, cs= c=
√
3 is the sound speed, and the kinematic viscosity is

given by

�=
(2�− 1)
6

(�x)2

�t
(7)

Obviously, if the density �uctuation of the �uid is small enough, or �≈�0 = constant, Equa-
tions (5) and (6) become the Navier–Stokes equations for incompressible �uid �ows.
From the arguments given above, we can see that the LBGK method can only be viewed as

an arti�cial compressible scheme for solving the incompressible Navier–Stokes equations in
the limit where the density goes to a constant. In practical simulations, however, the density
cannot be a constant since the pressure is proportional to the density. When used to simulate
incompressible �ows where the density is a constant, the LBGK solutions might depart from
the direct solutions of the incompressible Navier–Stokes equations [9], and at least part of
the departures might be attributable to the e�ects of the compressibility existing in the LBGK
method.
Recently, a new LBGK model (ID2Q9) is proposed for incompressible �uid �ows [13]

where the compressible e�ects are e�ectively reduced. The basic idea is to introduce the
pressure into the equilibrium distribution functions as an independent variable, and the density
does not appear. The discrete velocity directions of the model are the same as used in D2Q9,
and a new distribution function gi(x; t) is introduced with the equilibrium distribution function
g(eq)i (x; t) de�ned by

g(eq)i =




−4� p
c2
+ s0(u) i=0

�
p
c2
+ si(u) i=1; 2; 3; 4

�
p
c2
+ si(u) i=5; 6; 7; 8

(8)

where �; � and � are parameters satisfying �+�=� and �+2�=1=2. The evolution equation
of ID2Q9 is similar to Equation (1),

gi(x+ cei�t; t +�t)= gi(x; t)− 1
�
(gi − g(eq)i ) (9)
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The primitive macroscopic variables of the compressible �uid, the velocity u and pressure
p, are given by

u=
8∑
i=1
ceigi; p=

c2

4�

[
8∑
i=1
gi + s0(u)

]
(10)

Through multiscaling expansion, the incompressible Navier–Stokes equations can be derived
from this incompressible LBGK model as [13]

∇ · u=0 (11)

@u
@t
+∇ · (uu) =−∇p+ �∇2u (12)

to the order of O(�t2) or O(�x2) if the microscopic velocity c=O(1), where the kinetic
viscosity is given by Equation (7).
It should be noted that the physical meaning of the equilibrium distribution function gi is

di�erent from that of the conventional LBGK models. It is rather a Lagrangian variable than
a distribution function [15], so it can take negative values. Indeed, it can be easily veri�ed
that

∑8
i=0 g

(eq)
i =0, and this property plays an important role in deriving the incompressible

Navier–Stokes equations. This pressure-representation distribution function is di�erent from
the traditional density-representation one, because it may takes negative values. We noticed
that a similar distribution function that can take negative values is also used in a two-phase
LBGK model [16]. Furthermore, unlike the conventional LBGK model where the pressure is
determined by the density through an equation of state for ideal gas, the pressure p de�ned
by Equation (10) is irrelated to the density and can also take negative values, as in many
other incompressible Navier–Stokes solvers.

2.2. Lattice BGK equation for the temperature �eld

It is well known that if the viscous heat dissipation and compression work carried out by
the pressure are negligible, the temperature �eld is passively advected by the �uid �ow and
obeys a simpler passive-scalar equation,

@T
@t
+∇ · (uT )=D∇2T (13)

where D is the di�usivity.
To solve Equation (13) using lattice BGK equation, a lattice with four discrete velocity

directions e1; e2; e3 and e4 as de�ned before is introduced. It should be noted that other lattices,
such as the lattice used in the D2Q9 or the FHP model, can also be used. However, it seems
that the lattice introduced here is the simplest one.
The lattice BGK equation for Equation (13) is given by

Ti(x+ cei�t; t +�t)− Ti(x; t)=− 1
�′
[Ti(x; t)− T (eq)i (x; t)] (14)
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where �′ is the dimensionless relaxation time; Ti is the temperature distribution function, and
T (eq)i is the equilibrium value given by

T (0)i =
T
4

[
1 + 2

ei · u
c

]
(15)

The �uid temperature T is calculated from the temperature distribution function

T =
4∑
i=1
Ti (16)

It can be shown that the temperature equation (13) can be derived from the lattice BGK
equation (14) with Equation (16) through the Chapman–Enskog procedure, a multiscaling
expansion technique for solving the Boltzmann equation in kinetic theory. To see this, we
�rst expand Ti as

Ti=T
(0)
i + �T (1)i + �2T (2)i + : : : (17)

where T (0)i =T (eq)i , and � is a small parameter proportion to the Knudsen number (the ratio
of the mean free path to the characteristic �ow length). In the long-wave-length and low-
frequency limit, the lattice spacing �x and the time increment �t can be regarded as small
parameters of the same order as � [1]. In Equation (17), fneqi = �T (1)i + �2T (2)i + · · · represents
the nonequilibrium part of the distribution function Ti and the following constraints can be
derived from Equations (15) and (16):

4∑
i=1
T (m)i =0 (18)

for m=1; 2; : : :
To derive the macroscopic temperature equation, we introduce two macroscopic time scales

t1 = �t and t2 = �2t and a macroscopic length scale x1 = �x, thus

@
@t
= �

@
@t1
+ �2

@
@t2
; ∇= �∇1 (19)

Through a Taylor expansion in time and space, the lattice BGK equation (14) can be
written in continuous form as

DiTi +
�t
2
D2i Ti +O(�t

2)=− 1
�′�t

(Ti − T (0)i ) (20)

where Di=( @@t + cei · ∇). Substituting Equations (17) and (19) into Equation (20), and col-
lecting the terms of order � and �2 respectively, we have

D1iT
(0)
i =− T

(1)
i

�′�t
(21)

and

@T (0)i
@t2

+D1iT
(1)
i +

�t
2
D1iT

(0)
i =− T

(2)
i

�′�t
(22)
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where D1i=(
@
@t1
+ cei · ∇1). By using Equation (21) we can rewrite Equation (22) as

@T (0)i
@t2

+
(
1− 1

2�′

)
D1iT

(1)
i =− T

(2)
i

�′�t
(23)

Taking summation of Equations (21) and (23) about index i, respectively, we can obtain
the macroscopic equations on the t1 and t2 time scales:

@T
@t1
+∇1 · (uT )=0 (24)

and

@T
@t2
+

(
1− 1

2�′

)
∇1 ·�(1) = 0 (25)

where �(1) =
∑4

i=1 ceiT
(1)
i . After some algebra, we have �

(1) =− �′�x2
2�t ∇1T+O(M 2	T ), where

	T is the �uctuation of the �uid temperature which is small for incompressible �ows. Com-
bining Equations (24) and (25) we obtain the following temperature equation

@T
@t
+∇ · (uT )=D∇2T (26)

to the O(�t2) order if M is of the same order of �t or higher, where the di�usivity D is
determined by

D=
(2�′ − 1)

4
�x2

�t
(27)

2.3. The coupled lattice BGK model

The well-known Boussinesq approximation is often used in the study of natural convection.
With this approximation, it is assumed that all �uid properties (density, viscosity, thermal
di�usivity) can be considered as constant except in the body force term, where the �uid
density � is assumed to be a linear function of the temperature:

�=�0(1− 
(T − T0)) (28)

where �0 and T0 are the average �uid density and temperature, respectively, 
 is the coe�cient
of thermal expansion.
With the Boussinesq approximation, the gravity may be rewritten as

G=�0g− �0g
(T − T0) (29)

where g is the acceleration vector of gravity. After absorbing the �rst constant part of G into
the pressure term, the Boussinesq equations are obtained:

∇ · u=0 (30)

@u
@t
+∇ · (uu) =−∇p+ �∇2u − g
(T − T0) (31)
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@T
@t
+∇ · (uT ) =D∇2T (32)

The Boussinesq equations (30)–(32) can be simulated by the incompressible LBGK equa-
tion (9) coupled with the LBGK equation (14) for the temperature �eld. The coupling is
established by adding the following term to the right-hand-side of the evolution equation (9):

fi=− 1
2c
�t�iei · g
(T − T0) (33)

where �i= 	i2 + 	i4.
It should be noted that other forms of fi can also be used [17]. With this additional term,

the incompressible LBGK equation (9) becomes:

gi(x+ cei�t; t +�t)− gi(x; t)=−1
�
[gi(x; t)− g(eq)i (x; t)] + fi (34)

It can be shown that Equations (30) and (31) can be derived from Equation (34). Finally,
Equations (14) and (34) together with Eqs. (5) and (16) constitute a coupled LBGK (CLBGK)
model for the Boussinesq equations (30)–(32).
In Reference [8], He et al. also proposed a LBGK model for the Boussinesq equations.

Although both their model and the present CLBGK one share the same advantages as the
MDF ones, it is interesting to make a comparison between these two models. The CLBGK
model di�ers from He’s model in several ways. First, the LBGK equation for the velocity �eld
in He’ model is based on the isotherm LBGK equation proposed in Reference [12], so the
limitations of the isotherm LBGK equation still exist in the thermal model. Namely, the model
is still in an arti�cial compressible form and, as used for unsteady �ows, the model requires
an additional condition, T � L=cs; (T and L are characteristic time and length, respectively) in
order to neglect the arti�cial compressible e�ect. While the present CLBGK model overcomes
these drawbacks. The second di�erence is that the evolution equation of He’s model involves
gradient operator, and thus some of the simplicity of the LBGK methods is lost. While the
CLBGK model is as simple as the standard LBGK method. The third di�erence is that in He’s
model, the distribution function for temperature �eld is obtained from the distribution function
for velocity �eld, and thus they are required to use the same lattice. While in the present
CLBGK model, the distribution function for the temperature �eld is relatively independent of
that for the velocity �eld, so the CLBGK model can use two independent lattices for the two
distribution functions respectively. From this viewpoint, the present CLBGK model is more
�exible.

2.4. Boundary conditions

Boundary conditions play important roles in lattice Boltzmann methods in that they will
in�uence the accuracy and stability of the LBM [18; 19]. In a previous study we developed
an extrapolation rule for velocity boundary condition [20], which is of second order and
has better numerical stability. The method can be easily extended to impose thermodynamic
boundary conditions. In our study, we will use this method to implement the velocity and
temperature boundary conditions. The basic idea of the extrapolation method is to decompose
the distribution function gi on boundary node xb into its equilibrium and nonequilibrium parts:

gi(xb; t)= g
(eq)
i (xb; t) + g

(neq)
i (xb; t) (35)
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The nonequilibrium term g(neq)i represents the deviation from the equilibrium which should be
small (|g(neq)i |�|g(eq)i |). So it is reasonable to assume that g(neq)i =�tg(1)i . Thus,

g(neq)i (xb; t)= g
(neq)
i (xf; t) +O(�t2)= gi(xf; t)− g(0)i (xf; t) +O(�t2) (36)

where xf is the nearest neighbour �uid node of xb.
For velocity boundary condition where velocity u(xb; t) is known and pressure p(xb; t) is

unknown, the equilibrium part g(eq)i (xb; t) is approximated with a modi�ed equilibrium de�ned
by

�g(eq)i (xb; t)=




−4�p(xf; t)
c2

+ s0(u(xb; t)) i=0

�
p(xf; t)
c2

+ si(u(xb; t)) i=1; 2; 3; 4

�
p(xf; t)
c2

+ si(u(xb; t)) i=5; 6; 7; 8

(37)

Note that in incompressible �ows the �uctuation of pressure, 	p, is of M 2 order, so p(xb; t)=
p(xf; t) +O(�tM 2) and, therefore,

g(eq)i (xb; t)= �g
(eq)
i (xb; t) +O(�tM 2) (38)

In summary, the distribution gi(xb; t) on the boundary node xb is calculated as

gi(xb; t)= �g
(eq)
i (xb; t) + gi(xf; t)− g(eq)i (xf; t) (39)

to the accuracy of O(�t2 + �tM 2), or O(�t2) if M ∼ �t.
Thermal boundary conditions can be implemented in a similar way. If the temperature on

the boundary node xb is known, the temperature distribution is given by

Ti(xb; t)=T
(eq)
i (xb; t) + Ti(xf; t)− T (eq)i (xf; t) (40)

Alternately, if the temperature gradient is known on the boundary node xb, Ti(xb; t) is given
by

Ti(xb; t)= �T
(eq)
i (xb; t) + Ti(xf; t)− T (eq)i (xf; t) (41)

where �T
(eq)
i (xb; t) is an approximation to T

(eq)
i (xb; t) de�ned by

�T
(eq)
i (xb; t)=

T (xf; t)− (xf − xb) · ∇T (xb; t)
4

[
1 + 2

ei · u(xb; t)
c

]
(42)

It can be easily shown that the boundary conditions, Equations (40) and (41), are both second
order in �t, or �x if c=O(1).

3. SIMULATION RESULTS

To evaluate the performance of the coupled LBGK model developed in the above section,
we have carried out numerical simulations for the porous plate problem with a temperature
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gradient and the natural convection �ow in a square cavity. In simulations, the values of the
parameters that appeared in the equilibrium used are chosen such that � : �=!1 : !5, i.e.,
which yields �=5=12; �=1=3, and �=1=12.

3.1. Porous plate problem with a temperature gradient

The porous plate problem is a channel �ow where the upper cool plate moves with a constant
velocity, and a constant normal �ow of �uid is injected through the bottom warm plate and
withdrawn at the same rate from the upper plate. This problem models a �uid being sheared
between two porous plates through which an identical �uid is being injected normal to the
shearing direction. The governing equations of the �ow in steady state can be written as

v0
@u
@y
= �

@2u
@y2

(43)

@p
@y
= g
(T − T0) (44)

v0
@T
@y
=D

@2T
@y2

(45)

where v0 is the inject velocity, T0 = (Th + Tc)=2 is the average of the hot bottom plate tem-
perature Th and the cool upper plate temperature Tc. The analytical solution of the velocity
�eld in steady state is given by [21]:

u= u0

(
e(Re y=L) − 1
eRe − 1

)
(46)

where u0 is the velocity of the upper plate, Re is the Reynolds number based on the inject
velocity v0 and the channel width L. The temperature pro�le in steady state satis�es

T =T0 + �T
(
e(Pr·Re y=L) − 1
ePr·Re − 1

)
(47)

where �T =Th − Tc is the temperature di�erence between the hot and cool walls, Pr= �=D
is the Prandtl number. Another basic characteristic dimensionless parameter of the �ow is the
Rayleigh number de�ned by Ra= g
�TL3=(�D).
We �rst conducted a set of simulations to measure the velocity and temperature pro�les

for a range of the Reynolds number and Prandtl number. In the simulations, unless otherwise
mentioned, the system size is Nx ×Ny=64× 32, and the relaxation parameter !=1=� is
chosen to be 1.25. All other parameters can be chosen in terms of the Reynolds number,
Prandtl number and Rayleigh number. Periodic boundary conditions are used at the entrance
and exit of the channel, and the velocity and temperature boundary conditions, Equations (39)
and (40), are applied to the top and bottom plates.
Figure 1(a) shows the normalized temperature pro�les for Pr=0:71; Ra=100 and Re=

5; 20 and 30; Figure 1(b) shows the results for Ra=100; Re=10 and Pr=0:2; 0:8 and
1:5. Analytical solutions are also presented for comparison. As shown, the numerical results
are in excellent agreement with the analytical solutions. It is also observed that the velocity
distribution and the temperature one are both uniform along the channel in all cases.
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Figure 1. Temperature pro�les in the porous plate problem. Solid lines are the analytical solutions,
symbols represents the CLBGK solutions. (a) Pr=0:71; Ra=100; and (b) Ra=100; Re=10.

We also tested the ranges of � and �′ applicable for the model. It is well known that
the LBGK method will encounter numerical instability as � or �′ are close to 0.5. However,
the proposed scheme with the present boundary conditions was found to be accurate and
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Figure 2. Velocity and temperature pro�les in the porpoise plate problem as Pr=0:71; Re=10.
Solid lines are the analytical solutions, symbols represents the CLBGK solutions. (a) 1=�=1:99;

1=�′=1:991; Ra=100; (b) �=0:8; Ra=1000.

stable even as 1=�=1:99 and 1=�′=1:991 as Pr=0:71; Ra=100 and Re=10 (see Fig-
ure 2(a)). In�uence of the Rayleigh number on numerical stability was also studied for
Re=10; Pr=0:71 and �=0:8. The computations were stable for Ra=10; 100 and 1000
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Figure 3. Relative global error versus lattice spacing for the porous plate �ow. The slopes of the
least-square �tting lines are (◦) 2:04; (+) 1:98 and (�) 2:03, respectively.

(see Figure 2(b)), and the simulation results di�er slightly from each other in velocity and
temperature �elds. It was also found that the relative temperature di�erence, (Th−Tc)=Tc, has
little e�ect on the accuracy and stability of the computation for a given Rayleigh number
considered. As Ra=10 000, however, some oscillation occurred during the evolution, and we
could not obtain a converged solution.
Simulations were also carried out to evaluate the numerical accuracy of the model. In

simulations, the Prandtl number is set to be 0:71; Re=10, and Ra=100. Three di�erent values
of relaxation parameter 1=� (0.8,1.25 and 1.95) were used. In each case, the lattice spacing
�x varies from 1=16 to 1=128. Relative global errors in temperature �eld were measure, and
are shown in Figure 3 logarithmically. Here the relative global error is de�ned by [12]:

E=

√∑
i
|T (xi)− Ta(xi)|2√∑
i
|Ta(xi)|2

(48)

where the summation is over the entire system, Ta is the analytical solution. In Figure 3,
the symbols correspond to the results produced by the present CLBGK scheme, the solid
lines are the least-square �ttings. The slopes of the solid lines are 2.04, 1.98, and 2.03 for
1=�=0:8; 1:25 and 1.95, respectively. Clearly the present model is of second order in space.
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Figure 4. Flow con�guration of the natural convection �ow.

3.2. Natural convection in a square cavity

The con�guration of the natural convection �ow considered consists of a 2-D square cavity
with a hot wall on the left side and a cool wall on the right side (see Figure 4). The Rayleigh
number of the �ow is de�ned by Ra= g
�TH 3=(�D) where �T is the temperature di�erence
between the hot and cool walls, H is the height or width of the cavity.
The natural convection �ow in a square cavity has been numerically studied by many

authors. A benchmark solution has been published by de Vahl Davis [22]. He used a stream-
function-vorticity FD method with meshes up to 81× 81. Another benchmark solution for this
problem was presented by Hortmann and Peri�c using a �nite volume multigrid method [23]
with much �ner grids. In the present paper, simulations for Ra=103; 104; 105; and 106 with
the present LBGK model are carried out. In all simulations, Pr is set to be 0.71 (air), and the
lattice size used is chosen to be Nx×Ny=128× 128, and the relaxation parameter !=1=�
is set to be 0.4, 0.5, 1.2 and 1.8 for Ra=103; 104; 105 and 106, respectively. !′=1=�′ is
determined from the Prandtl and Rayleigh numbers. In all simulations the velocity boundary
condition, Equation (39), is applied to the four walls, the temperature boundary conditions,
Equations (40) and (41), are applied to the vertical walls and horizontal walls, respectively.
Streamlines and isotherms predicted for �ows at di�erent Rayleigh numbers are shown in

Figures 5(a)–(d) and Figures 6(a)–(d). From the �gures, we can see that for low values of
Ra, a central vortex appears as the typical features of the �ow. The vortex tends to become
elliptic as Ra increases, and breaks up into two vortices at Ra=105. When Ra reaches to
106, the two vortices move towards the walls and a third vortex appears in the center of
the cavity. The isotherms show the change of the dominant heat transfer mechanism as the
Rayleigh number increases. For small Ra, the heat is transferred mainly by conduction between
the hot and cold walls, and the isotherms are almost vertical. As Ra increases, the dominant
heat transfer mechanism changes from conduction to convection, and the isotherms become
horizontal in the center of the cavity, and are vertical only in the thin boundary layers near the
hot and cold walls. All of these observations are in good agreement with the results reported
in previous studies [23; 24].
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(a) (b)

(c) (d)

Figure 5. Stream lines of the natural convection �ow.

To quantify the results, data of the LBGK solution are listed in Table I as well as
the benchmark solution given by Hortmann and Peri�c [23]. The comparison includes the
average Nusselt number Nuave along the cold wall, its maximum value Numax and the location
yNu where it occurs, the maximum velocity values and their corresponding locations. the
maximum horizontal velocity component at the mid-width, umax and its location ymax, and the
vertical velocity component at the mid-height, vmax and its location xmax. The grid-independent
locations yNu, ymax and xmax were not given in Reference [23], and we obtained these data by
using the same extrapolation scheme as used in Reference [23]. There is excellent agreement
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(a) (b)

(c) (d)

Figure 6. Isotherms of the natural convection �ow.

between the two solutions. The di�erence between the LBGK and the benchmark solutions is
less than 2.0 per cent for the Rayleigh numbers considered here.
The relation between Nuave and Ra may be described as a power-law equation:

Nuave = a(Ra)b

where a and b are two constants. The results from the present LBGK simulation give
a=0:1425 and b=0:2991, which are in good agreement with the results (a; b)= (0:143; 0:299)
reported in Reference [25] and (a; b)= (0:142; 0:299) reported in Reference [24].
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Table I. Simulation results of the natural convection �ow.

Ra umax ymax vmax xmax Numax yNu Nuave

103 a 3.6554 0.8125 3.6985 0.1797 1.5004 0.90625 1.1168
b — — — — — — —

104 a 16.0761 0.8203 19.6368 0.1172 3.5715 0.8594 2.2477
b 16.1802 0.8265 19.6295 0.1193 3.5309 0.8531 2.2442

105 a 34.8343 0.8594 68.2671 0.0625 7.7951 0.9219 4.5345
b 34.7399 0.8558 68.6396 0.0657 7.7201 0.9180 4.5216

106 a 65.3606 0.8516 216.415 0.0391 17.4836 0.9688 8.7775
b 64.8367 0.8505 220.461 0.0390 17.536 0.9608 8.8251

aPresent work; bbenchmark solution [23].

In simulations, the temperature di�erence seems to have a minor e�ect on numerical stability
in the parameter range considered here. The main parameters a�ecting the numerical stability
are the relaxation times � and �′. We found that the scheme was still accurate and stability
even as 1=�=1:99. For example, as Ra=106, the values of umax; ymax; vmax; xmax; Numax; yNu and
Nuave are 65.0289, 0.8516, 215.717, 0.0391, 17.391, 0.9688 and 8.7726, respectively, which
are within 2.2 per cent departure from the benchmark values.

4. CONCLUSIONS

We have presented a coupled LBGK model (CLBGK) for the Boussinesq incompressible
�ows. Two LBGK equations are �rst proposed for the velocity and temperature �elds, respec-
tively, and then are coupled into a composite model based on the Boussinesq approximation.
Numerical simulations of the porous plate �ow with temperature gradient and the natural

convection �ow in a square cavity were carried out to test the model. For the �rst problem,
the numerical results agree well with the analytical solutions, and the second order accuracy
of the model was con�rmed. In�uences on the numerical stability of the relaxation time �
and �′, and the Rayleigh number were also studied.
Simulations of the natural convection �ow in a square cavity correctly predicted the �ow

features for di�erent Rayleigh numbers considered here. The CLBGK solutions compare fa-
vorably with the benchmark solutions [23]. The relation between Nu and Ra are also in good
agreement with the results of previous studies [24; 25].
The present CLBGK model can be easily extended to other two- or three-dimensional

models. Such extension and applications will be considered in future studies.
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